metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Li-Jun Wang,^a* Hong Jiang,^a Yong Wang,^b Kui-Zhan Shao^b and Zhong-Min Su^b*

^aPublic and Basic Courses Department of Beihua University, Jilin 132013, People's Republic of China, and ^bInstitute of Functional Materials Chemistry, Department of Chemistry, Northeast Normal University, Changchun 130024, People's Republic of China

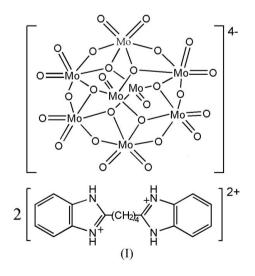
Correspondence e-mail: wanglj649@yahoo.com.cn, zmsu@nenu.edu.cn

Key indicators

Single-crystal X-ray study T = 293 KMean σ (C–C) = 0.005 Å R factor = 0.028 wR factor = 0.049 Data-to-parameter ratio = 16.2

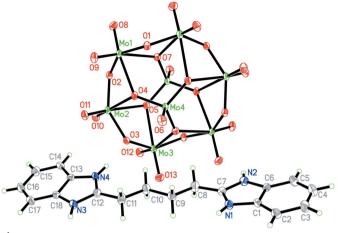
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the title compound, $(C_{18}H_{20}N_4)_2[\alpha-Mo_8O_{26}]$, the centrosymmetric α -octamolybdate anions are linked by 2,2'-(butane-1,4-diyl)bis(1*H*-benzimidazolium) cations through N-H···O

hydrogen bonds, forming a three-dimensional network.

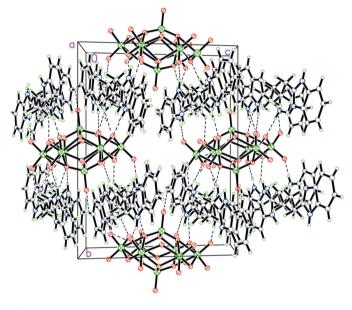

Bis[2,2'-(butane-1,4-diyl)bis(1*H*-benzimidazolium)]

Received 22 November 2006 Accepted 19 January 2007

Comment


a-octamolybdate(VI)

The rapid progress in exploring inorganic-organic hybrid materials has been driven by the interest in their fascinating structural diversity and promising potential applications in chemistry, biology and materials science (Pope & Müller, 1991; Moulton & Zaworotko, 2001). It is well known that polyoxometalate building blocks can be linked into extended structures via coordination bonds, π - π stacking, hydrogen bonds and combinations of these interactions (An et al., 2006; Chen et al., 2005; Lu et al., 2004). The structures of many compounds containing octamolybdate anions and organic cations have been investigated (Gili et al., 1992; Xu et al., 1999; Feng et al., 2005). The bis(2-benzimidazole) ligand and some substituted bis(2-benzimidazolyl)alkane ligands are attractive choices as multifunctional linking groups (Wang et al., 2006). During our ongoing studies of related compounds, we obtained the title compound, (I), by a hydrothermal reaction of Na₂MoO₄·2H₂O, Co(NO₃)₂·6H₂O and 2,2'-(butane-1,4-diyl)bis(1H-benzimidazole) (L) in water.


As illustrated in Fig. 1, compound (I) contains H_2L cations and centrosymmetric octamolybdate $[\alpha - Mo_8O_{26}]^{4-}$ anions. The anion is constructed from six MoO₆ octahedra and two MoO₄ tetrahedra. The Mo atoms in the six edge-sharing MoO₆ octahedra are coplanar, forming a six-membered ring with each side of the plane being capped by an MoO₄ tetrahedron

© 2007 International Union of Crystallography All rights reserved

Figure 1

The structure of the anion and cation of (I). Displacement ellipsoids are drawn at the 30% probability level. The inversion center at the central point of the octamolybdate anion generates the unlabeled atoms by the symmetry operation (1 - x, 2 - y, 1 - z).

Figure 2

Crystal packing in (I), viewed along the *a* axis. Dashed lines indicate hydrogen bonds. Color scheme: C gray; H jade-green; Mo bottle-green; O red; N blue.

via corner sharing. There are three kinds of O atoms in the $[\alpha - Mo_8O_{26}]^{4-}$ anion: terminal O, μ_2 -O and μ_3 -O. The bond distances and angles in the anion fall within the expected ranges (Yang *et al.*, 2002). The α -octamolybdate anions and the H₂L cations are linked *via* N-H···O hydrogen bonds to form a three-dimensional network structure (Fig. 2 and Table 1).

Experimental

A mixture of $Co(NO_3)_2 \cdot 6H_2O(0.3 \text{ mmol}, 0.087 \text{ g})$, $Na_2MoO_4 \cdot 2H_2O(1 \text{ mmol}, 0.242 \text{ g})$, L(0.3 mmol, 0.088 g) and water (10 ml) was adjusted to pH = 4 with 6 *M* HCl, with continuous stirring for 20 min in air. The mixture was then transferred to a 23 ml Teflon-lined reactor and kept at 443 K for 3 d under autogenous pressure. Upon

Crystal data

 $\begin{array}{l} ({\rm C}_{18}{\rm H}_{20}{\rm N}_4)_2 [{\rm Mo}_8{\rm O}_{26}] \\ M_r = 1768.28 \\ {\rm Monoclinic}, \ P2_1/c \\ a = 10.4046 \ (4) \ {\rm \AA} \\ b = 18.0223 \ (7) \ {\rm \AA} \\ c = 14.0282 \ (5) \ {\rm \AA} \\ \beta = 104.989 \ (1)^\circ \\ V = 2540.99 \ (17) \ {\rm \AA}^3 \end{array}$

Data collection

Bruker SMART APEX2 CCD diffractometer φ and ω scans Absorption correction: multi-scan

(SADABS; Bruker, 2004) $T_{min} = 0.635, T_{max} = 0.727$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.028$ $wR(F^2) = 0.049$ S = 1.005972 reflections 368 parameters Z = 2 D_x = 2.311 Mg m⁻³ Mo K α radiation μ = 2.00 mm⁻¹ T = 293 (2) K Block, colorless 0.25 × 0.20 × 0.17 mm

15487 measured reflections 5972 independent reflections 4246 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.034$ $\theta_{\text{max}} = 28.3^{\circ}$

H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.0139P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.001$ $\Delta\rho_{max} = 0.53 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.51 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$N1 - H1N \cdots O12^{i}$ $N2 - H2N \cdots O11^{ii}$ $N2 - H2N \cdots O8^{iii}$ $N3 - H3N \cdots O9^{iv}$ $N4 - H4N \cdots O3$	$\begin{array}{c} 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \\ 0.85 \ (1) \\ 0.86 \ (1) \end{array}$	2.00 (2) 2.39 (2) 2.20 (2) 2.00 (2) 1.97 (1)	2.848 (4) 3.050 (4) 2.929 (4) 2.774 (4) 2.819 (3)	175 (3) 134 (3) 144 (3) 151 (3) 172 (3)

Symmetry codes: (i) -x + 1, $y - \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x + 1, -y + 2, -z + 1; (iv) x, $-y + \frac{3}{2}$, $z - \frac{1}{2}$.

H atoms attached to C atoms were positioned geometrically and refined as riding atoms, with C–H = 0.93 (CH) and 0.97 Å (CH₂) and $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm C})$. H atoms attached to N atoms were located in a difference Fourier map and refined isotropically, with restraints of N–H = 0.86 (1) Å.

Data collection: *APEX2* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL-Plus* (Sheldrick, 1990); software used to prepare material for publication: *SHELXTL-Plus*.

The authors gratefully acknowledge financial support from the National Natural Science Foundation of China (project Nos. 20373009, 20571029 and 20573016).

References

An, H. Y., Wang, E. B., Xiao, D. R., Li, Y. G., Su, Z. M. & Xu, L. (2006). Angew. Chem. Int. Ed. 45, 904–908.

- Bruker (2004). *APEX2* (Version 1.08), *SAINT* (Version 7.03) and *SADABS* (Version 2.11). Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, Y. H., Peng, J., Yu, H. Q., Han, Z. G., Gu, X. J., Shi, Z. Y., Wang, E. B. & Hu, N. H. (2005). *Inorg. Chim. Acta*, 358, 403–408.
- Feng, S.-S., Lu, L.-P., Zhang, H.-M., Qin, S.-D., Li, X.-M. & Zhu, M.-L. (2005). Acta Cryst. E61, m659–m661.
- Gili, P., Martin-Zarza, P., Martin-Reyes, G., Arrieta, J. M. & Madariaga, G. (1992). *Polyhedron*, **11**, 115–121.
- Lu, Y., Xu, Y., Wang, E. B., Li, Y. G., Wang, L., Hu, C. W. & Xu, L. (2004). J. Solid State Chem. 177, 2210–2215.
- Moulton, B. & Zaworotko, M. J. (2001). Chem. Rev. 101, 1629-1658.

- Pope, M. T. & Müller, A. (1991). Angew. Chem. Int. Ed. Engl. 30, 34-48.
- Sheldrick, G. M. (1990). SHELXTL-Plus. Siemens Analytical X-ray Instrument Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Wang, Y., Xu, H. B., Su, Z. M., Shao, K. Z., Zhao, Y. H., Cui, H. P., Lan, Y. Q. & Hao, X. R. (2006). *Inorg. Chem. Commun.* 9, 1207–1211.
- Xu, J. Q., Wang, R. Z., Yang, G. Y., Xing, Y., Lin, Y. H. & Jia, H. Q. (1999). Chem. Commun. pp. 983–984.
- Yang, W. B., Lu, C. Z. & Zhuang, H. H. (2002). Dalton Trans. pp. 2879–2884.